The hot brine located in a vast underground reserve beneath the Salton Sea likely contains enough lithium to build batteries for 375 million electric vehicles,according to a new report released Tuesday.
The report from Lawrence Berkely National Laboratory and funded by the Energy Department represents the first time researchers have thoroughly quantified how much lithium might be present in the underground reserve.
Researchers found that an estimated 18 million metric tons of lithium carbonate is likely available in the large underground pool, which isn’t connected to the Salton Sea.
That large of a lithium deposit could “enable the United States to meet or exceed global lithium demand for decades,” according to a press release from the Department of Energy.
Continue reading “With No Mining, This Lithium Resource is Immense”The analysis confirms the region has significant potential as a domestic source of this critical mineral used in batteries for stationary storage and EVs, both of which are crucial to the Biden-Harris Administration’s goal of a net-zero emissions economy by 2050.
“Lithium is vital to decarbonizing the economy and meeting President Biden’s goals of 50% electric vehicle adoption by 2030,” said Jeff Marootian, Principal Deputy Assistant Secretary for Energy Efficiency and Renewable Energy. “This report confirms the once-in-a-generation opportunity to build a domestic lithium industry at home while also expanding clean, flexible electricity generation. Using American innovation, we can lead the clean energy future, create jobs and a strong domestic supply chain, and boost our national energy security.”
The United States currently has limited capabilities to extract, refine, and produce domestically sourced lithium, meaning nearly all lithium for U.S. needs must be imported. Geothermal brines, which are a byproduct of geothermal electricity generation, often have high concentrations of minerals like lithium and zinc. While exact concentrations of these minerals depend on the location and surrounding geology, the use of direct lithium extraction (DLE) from geothermal brines offers a promising opportunity to couple clean, renewable electricity with a source of domestic lithium. Findings of the analysis are based on the ability to access the entire Salton Sea geothermal reservoir for electricity production, as well as the ability to fully extract lithium resources from resulting geothermal brines.
The Salton Sea Known Geothermal Resource Area (KGRA) has about 400 megawatts (MW) of geothermal electricity-generation capacity installed and is estimated to have the potential for up to 2,950 MW, leaving extensive room to increase geothermal electricity generation while accessing more of the region’s available lithium resources—enabling the United States to meet or exceed global lithium demand for decades. The study also assessed environmental impacts of lithium extraction, including water use, air emissions, and solid waste, and engaged the surrounding community for listening sessions and other discussions to ensure consideration for local concerns and ideas.







